e . ———ili i

Averaging, Grids and |
Interpolation |

] A
w H“"*—"'H‘m‘_———wﬂ»\

Averaging !

 There are many ways... |
— Simple user-defined averages
— Averaging functions in MA(.average)
— Averaging functions in cdutil(.averager)

e This session presents some detalls on:
— Averaging over axes
— Weighted averaging f'

1"d.m.‘.'‘1'....-.-f"--——.-m-—-—- s — e e T i T e g, _-__TW’J

Simple user-defined averaging

e You can create your own simple averages using
arrays, slabs or variables in the usual way:

— Averaging over 4 time steps:
>>> t.shape

(4, 181, 360)
>>> av=(t[O0]+t[1]+t[2]+¢€[3])/4

e Drawbacks:

— Doesn’t retain your metadata.
— Cannot average simply across axes within a variable.

-

it

—e =

——

« The MA module has an averaging

function:

MA Averaging

-

- by g o

MA_.average(x, axis=0, weirghts=None,

returned=0)

— computes the average value of the non-masked elements of
x along the selected axis. If weights is given, it must match
the size and shape of x, and the value returned is:

— elements corresponding to those masked in x or weights are
ignored. If returned, a 2-tuple consisting of the average and '

Z(we.ig/nsf - X;)

Zwe*i ghts,

the sum of the weights is returned.

I g I — .=

— T e e

MA Averaging: example !

 To calculate a set of zonal means:
>>> pmport MA
>>> # data 1Is some array
>>> arr=MA.array(data)
>>> print arr.shape
(1,181,360)
>>> zm=MA.average(arr, axis=2)
>>> print zm.shape
(1,181)

-

" ——

T — e -
e F— o gl

5

/’F

o

_h‘-.—-—l"——-———; e e e i— e e e gl el ittt e -—#FJW\MJ

The cdutil “averager” function

 The “cdutil.averager()” function is the key to spatial
and temporal averaging in CDAT.

e Masks are dealt with implicitly.
 Powerful area averaging function.

* Provides control over the order of operations (i.e.
which dimensions are averaged over first).

« Allows weightings for the different axes:

— pass your own array of weights for each dimension, use the
default (grid) weights or specify equal weighting.

1"d.m.‘.'‘1'....-.-f"--——.-m-—-—- s — e e T i T e g, _-__TW’J

— T e e

Usage of cdutil.averager !

-

result = averager(V, axis=axisoptions,
weilghts=weilghtoptions,
action=actionoptions,
returned=returnedoptions,
combinewts=combinewtsoptions)

- by g o

axisoptions has to be a string. You can pass axis="tyx', or '123', or 'X
(plev)'.

— T e e

weightoptions is one of 'generate’ | ‘weighted’ | ‘equal’ |
‘unweighted’ | array | Masked Variable

actionoptions is '‘average' | 'sum’ [Default = 'average’.
You can either return the weighted average or the weighted sum of

the data. /_7_\
I

weightoptions: ‘generate’ or ‘weighted’ option *

 Weights are generated using the bounds for the
specified axis.

« For latitude and longitude, the weights are calculated
using the area (see grid.getWeirghts()).

* For other axes weights are the difference between
the bounds (when the bounds are available).

 If the bounds are stored in the file being read in, then
those values are used. Otherwise, bounds are
generated as long as cdms.setAutoBounds(“on™) IS
set (the default setting).

e |f cdms.setAutoBounds(“off>) IS set then an Error Is
raised. 2

I

o
T e e e e e e il attie . et

— il

cdutil.averager — basic usage (1) !

>>> pmport cdms, cdutil

>>> f=cdms.open(“myvars.xml?”)

>>> var=f(“nolOu’, time=slice(0,10))
>>> print var

nolO0u

array(array(10,181,360), type=f, has 651600
elements)

>>> Jon_average=cdutil._.averager(var, axis=“x’’)
>>> lon_average.shape

(10, 181)

>>> time_average=av(var, axis=“t")
>>> time_average.shape

(181, 360)

it

—e -

——

cdutil.averager — Weights !

-

Use auto generated weights based on bounds for area averaging: |
>>> gv=cdutil.averager s

>>> area_av=av(var, axis=“yx”, \
weights=[*‘generate”, ‘“generate’])
>> area_av.shape

(10,)

>>> all _av=av(var, axis=“tyx”, \
weights=[“generate”, ‘‘generate”, ‘‘generate’’])

>>> all _av.shape

O

You can use the “area_weights” function to generate a set of
weights before averaging.

>>> gen_weilghts = cdutil.area_weights(x)

— T e e -

Temporal averaging *

e Averaging over time Is a special problem in
climate data analysis.

e cdutil makes the extraction of time averages
and climatologies simple.

e Functions for annual, seasonal and monthly
averages and climatologies

r
» User-defined seasons (such as “FMA”"). 1{

* Dealt with in detail Iin the climate-specific tools |
session. :

T e e e e e e il attie . et

Grids in CDAT !

 Why grids?

« The CDMS RectGrid class
e Regridding (interpolation)
e Horizontal regridding f
 Vertical regridding §
« SCRIP - regridding Generic grids |

Why grids? *

* Horizontal grid is very common domain description
for a measured/modelled phenomenon.

e A HorizontalGrid represents a latitude-longitude
coordinate system. In addition, it optionally describes
how lat-lon space is partitioned into cells. Specifically,
a HorizontalGrid:

— consists of a latitude and longitude coordinate axis.

— may have associated boundary arrays (bounds) describing
the grid cell boundaries.

— may optionally have an associated logical mask.

-

- by g o

— T e e

The CDMS RectGrid class and its operations. *

-

« CDMS includes support for grids, commonly we
encounter RectGrids.

 Reading a grid from a variable:
>>> grd=var.getGrid()
>>> lat=grd.getLatitude()

e Creating a RectGrid:

cdms.createRectGrid(lat, lon, order,
type="'generic', mask=None)
e For example:
>>> lat=cdms.createAxis([1,2,3])
>>> lat.designatelLatitude()
>>> Jon=cdms.createAxis([0,2,4])
>>> lon.designateLongitude()

>>> grd=cdms.createRectGrid(lat, lon) J//ffﬂﬂ.+ﬁ
|

- by g o

— T e e

More useful grid operations *

e Support for Gaussian grids:

>>> cdms.createGaussianGrid(nlats, xorigin=0.0,

order=""yx’’)

-

- by g o

— Creates a Gaussian grid, with shape (nlats, 2*nlats).

— nlats is the number of latitudes.
— xorigin is the origin of the longitude axis.

— order is either “yx” (lat-lon, default) or “xy” (lon-lat)

e Support for diagnostic grids:
>>> createZonalGrid(grid)

— Creates a zonal grid. The output grid has the same latitude
as the input grid, and a single longitude. This may be used to
calculate zonal averages via a regridding operation. grid is a

RectGrid.
>>> createGlobalMeanGrid(grid)

— Generate a grid for calculating the global mean via a
regridding operation. The return grid is a single zone covering

the range of the input grid. grid is a RectGrid. /—7—\
|

— T e e

Support for other grid types !

-

RectGrid - Associated latitude and longitude are
1-D axes, with strictly monotonic values.

CurveGrid - Latitude and longitude are 2-D
coordinate axes (Axis2D).

—e = 4

——

GenericGrid - Latitude and longitude are 1-D
auxiliary coordinate axes (AuxAxis1D)

Curvilinear and Generic Grids

Sample variable

sample

0] 70 &1 a0 100 1o 120

40

W O
& 3

FIGURE 1. Curvilinear grid

[- - T - R - R - B S I - I I

FIGURE 2. Generic grid

id types. The method

£

present any of the

Generie grids can be used to re

toGenerieGrid can be applied to any grid to convert it to a generie repre-

presented as curvilinear.

sentation. Similarly, a rectangular grid can be re

The method toCurveGrid 15 used 1o convert a non-generic grid o curvilin-

car representa ton:

Interpolation (re-gridding) {

T regrid variable u (from a rectangular grid) to a 96 x 192
rectangular Gaussian grid:

>>>
>>>
>>>
>>>
G,
>>>
>>>
>>>

G,

import cdms

f=cdms.open(“mydata.nc’)

var = f(Ctemp?)

var .shape

72, 144)

n48 grid = cdms.createGaussianGrid(96)
var48 = var.regrid(n48 grid)
var48.shape

96, 192)

e

. it

Using createUniformGrid()

#1/usr/local/cdat/bin/python
import cdms

from regrid i1mport Regridder
T = cdms.open("temp.nc*®)

t= f-variables['t']

ingrid S ?-Ithlrl-llldlg?llIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
outgrid ::cdms createUniformGrid(-90.0, ¥ea

: A5 QSN0 A2 Tabae :
regrndFund":"R'e'dﬁ'da'e'F 1ngi 'fd"'éh'f@'r‘u‘c‘i)""""

newt = regridFunc(t)
import vcs
ves.init().plot(t)

S

vcs.init().plot(hewt) ?;ﬁﬂ%ﬁ

o I ————e =

e |If you are going to use a regridding function
repeatedly it is more efficient to create your own

Using the Regridder class *

-

- by g o

regridding function using the Regridder class:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import cdms, regrid
f=cdms.open(“myfilio.nc?)
varl=f(“surface_temperature’)
var2=f(“no2t’)

gridl=varl.getGrid()

grid2=var2.getGrid()
regridFunc=regrid.Regridder(gridl, grid2)
regriddedVarl=regridFunc(varl) {
diff=regriddedVarl-var2 # gives difference

— T e e

Vertical regridding *

e You can regrid pressure-level coordinates in the
vertical axis using the pressureRegrid() method.

- by

e You need to define, or use an existing, vertical axis.

e Then use the pressureRegrid method on the variable
you wish to regrid, passing it the new level as the
argument:

— T e e

 If var is the variable to regrid and the newlevs is
the vertical axis to regrid to: f

>>> var_on_new_ levels = var.pressureRegrid(levout) |

Y ai

Vertical regridding: an example *

>>> pmport MV, cdms

>>> f=cdms.open("temp.ctl”")

>>> t=F("t")

>>> t.getLevel ([:]

[[F1000., 925., -850., 775., " 700 3 6 0EEESs Nt
OO0~ 300, -250., 200.., - 15053 FEREOES V48 e
502>; 30 2 10., T St B

2]

>>> t.shape

(eI 23-.181, /360)

>>> nl=cdms.createAxis(MV.array([976.0, 831.0,
221.0]))

>>> nl.designatelLevel ()

>>> t _regridded=t.pressureRegrid(nl)

>>> t regridded.shape

Gle3, 181, 360)

>>> t_regridded.getLevel OQ[:]]

[976., 831., 221.,] /—Jr

dn._r—.f'-—:-—-——m i —_ s R ——————— - :, : ". r“-r

=

e T s, r—

pr——

e

SCRIP —regridding irregular grids (1)

 CDAT now supports irregular grids that can be
Interpolated using the SCRIP (Spherical Coordinate
Re-mapping and Interpolation Package) package (not
provided with CDAT) as follows:

— Obtain or generate the source and target grids in SCRIP
NetCDF format. Write a CDMS grid using the
writeScripGrid() method.

— Edit the input name list file scrip_in to reference the grids
and select the method of interpolation, either conservative,
bilinear, bicubic, or distanceweighted.

— See the SCRIP documentation for detailed instructions:

- by g o

— T e e

http://climate.lanl.gov/Software/SCRIP/SCRIPusers.pdf

SCRIP —regridding irregular grids (2)

 Atthe command line, the SCRIP executable generates a

!

|

E

1

re-mapping file containing the transformation coefficients. |

 In CDMS, open the re-mapping file and create a
regridder function with the readRegridder() method.

~ « Call the regridder function on the input variable, defined
on the source grid.

dn._r—.f'-—:-—-——m i —_ s R ——————— - :, : ". r“-r

— T e e

	Averaging, Grids and Interpolation
	Averaging
	Simple user-defined averaging
	MA Averaging
	MA Averaging: example
	The cdutil “averager” function
	Usage of cdutil.averager
	weightoptions: ‘generate’ or ‘weighted’ option
	cdutil.averager – basic usage (1)
	cdutil.averager – Weights
	Temporal averaging
	Grids in CDAT
	Why grids?
	The CDMS RectGrid class and its operations.
	More useful grid operations
	Support for other grid types
	Curvilinear and Generic Grids
	Interpolation (re-gridding)
	Using createUniformGrid()
	Using the Regridder class
	Vertical regridding
	Vertical regridding: an example
	SCRIP – regridding irregular grids (1)
	SCRIP – regridding irregular grids (2)

